If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-4x-392=0
a = 1; b = -4; c = -392;
Δ = b2-4ac
Δ = -42-4·1·(-392)
Δ = 1584
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1584}=\sqrt{144*11}=\sqrt{144}*\sqrt{11}=12\sqrt{11}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-12\sqrt{11}}{2*1}=\frac{4-12\sqrt{11}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+12\sqrt{11}}{2*1}=\frac{4+12\sqrt{11}}{2} $
| 4^(y+8)=6 | | 4^y+8=6 | | 20x+4=2x+20 | | x(7x+1)=(7x+1)(x-2) | | 7(3w+1)/3=5 | | 4(y+2)^2-4=33 | | 10(s-4)=87 | | 3(8s+4)-14s=2(5s+6)-16 | | 10r+4=19 | | 4z-14=z-5 | | 2.5=4x-5.4-3x | | 6a+18=180 | | 0.27(9)+0.03x=0,09(6+x) | | 5-m=9-14m | | 2x+3x+4=100 | | 2(2x+3)-7x=+5(x+2x) | | 5/2x+6=7x-8 | | X/2+3/2=2x/2-1/ | | 2.7=(.75)x | | 3/4x-1/3x=5/6x-5, | | -2=4(x-1)-1 | | ,2x^2-6x-2x+6=0 | | 4x-40=16 | | 0.765x3+1.427x-4.578=0 | | 7.25h+5=6.5h | | 3p/10-6=7 | | 5z+1=5z | | 13=-16t^2+21t+7 | | 25=17+4/5t | | 66+7x=16 | | 8x-10=6x+25 | | 3x+6(-5x)=2(2x+11) |